Predictive Policing

Data, Discretion, and the Future of Policing

Courts, Corrections, and Justice Committee September 27th, 2023

Sarah Brayne
Associate Professor of Sociology
University of Texas at Austin

Level Setting: Definitions

Big data: 3 Vs (Volume, Variety, and Velocity)

Algorithm: formally specified set of instructions used to analyze data and automate decisions

Artificial Intelligence: capability of a machine to imitate intelligent human behavior

Machine learning: subfield of artificial intelligence that gives computers the ability to learn without explicitly being programmed (can be "supervised" or "unsupervised")

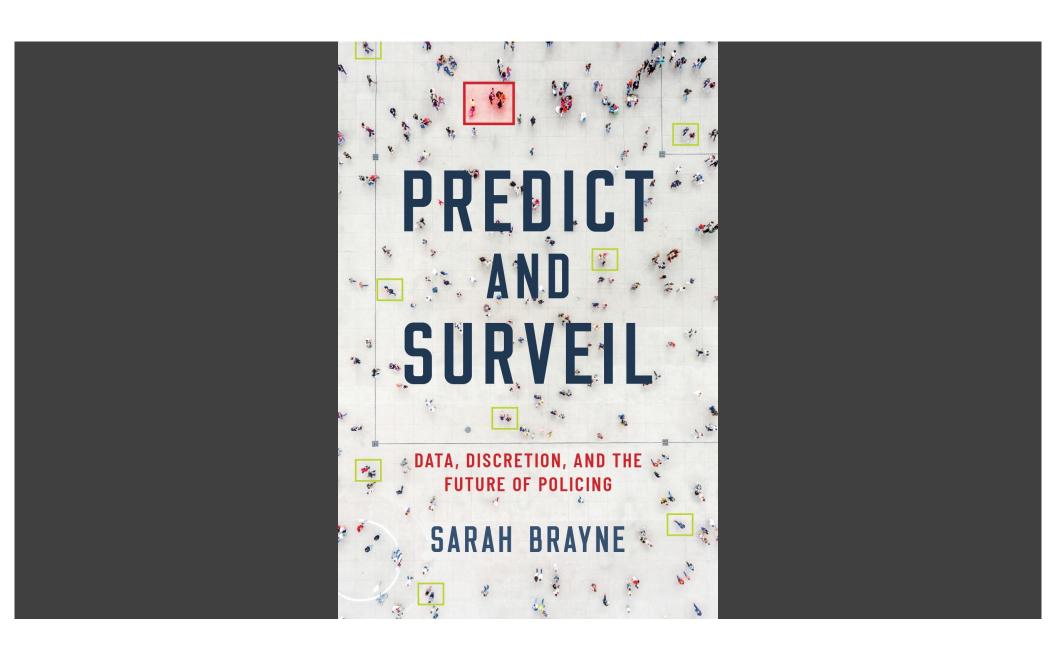
E.g., natural language processing, neural networks, deep learning

Predictive policing: the use of data to predict when and where crime is more likely to occur in the future, and who is likely to be involved

the computational analysis of massive and diverse datasets to automate decisions and make predictions.

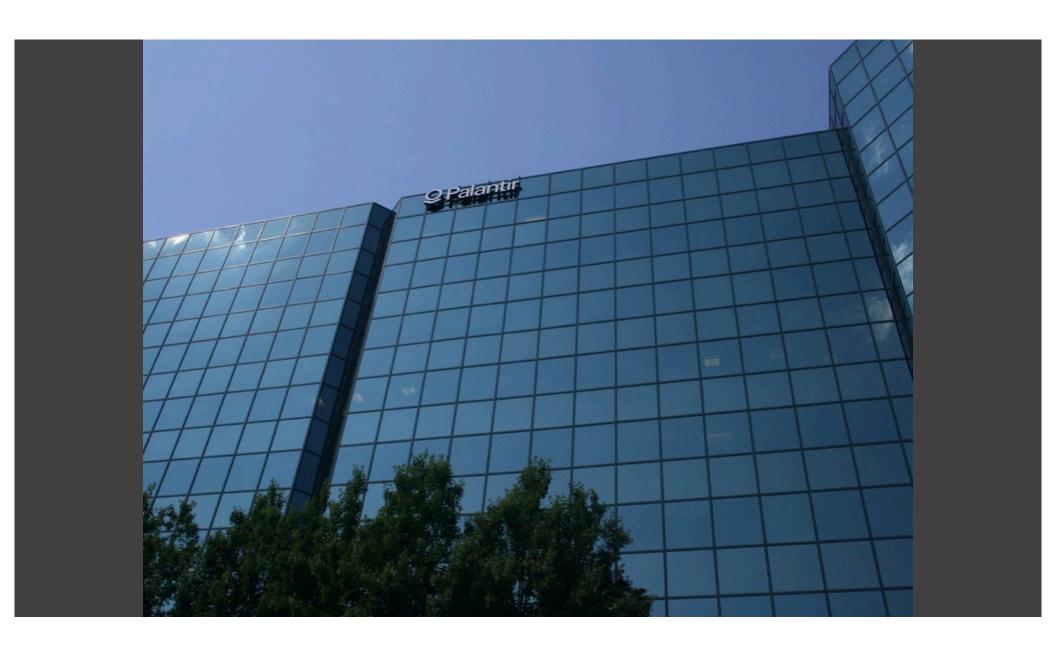
Focus: Policing

- Feeder into criminal justice system
- Reforms targeted at policing phase can be very impactful because they cascade into other phases of criminal justice system



Fieldwork

- Los Angeles Police Department
 - Area divisions
 - Specialized divisions: Robbery-Homicide, Information Technology, Fugitive Warrants, Records and Identification, Juvenile, Risk Management, Air Support
 - RACR
 - Ride-alongs
- LA County Sheriff's Department
- JRIC
- PredPol
- Palantir
- Surveillance industry conferences
- · Training manuals



The state has long used data for governance. What's new?

- The state has long used data to govern its citizens
- Recently, state actors relying more heavily on private vendors
- Privatization brought the logic of risk, actuarial calculations
- Police use data for: 1) Efficiency; 2) Accountability and Legitimacy

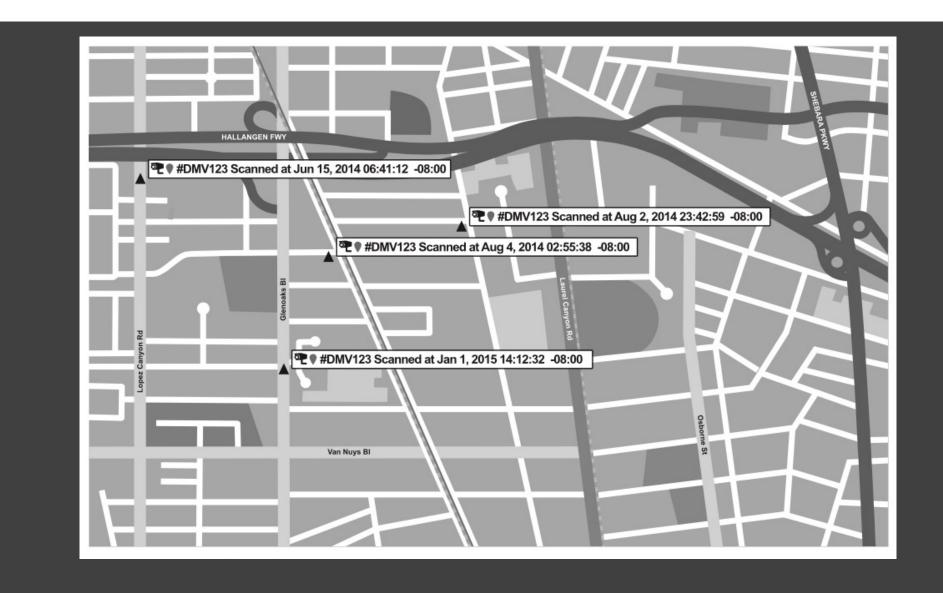
CRIME AT A GLANCE: MARKING A MAP WITH COLOURED FLAGS IN THE NEW MAP ROOM AT SCOTLAND YARD.

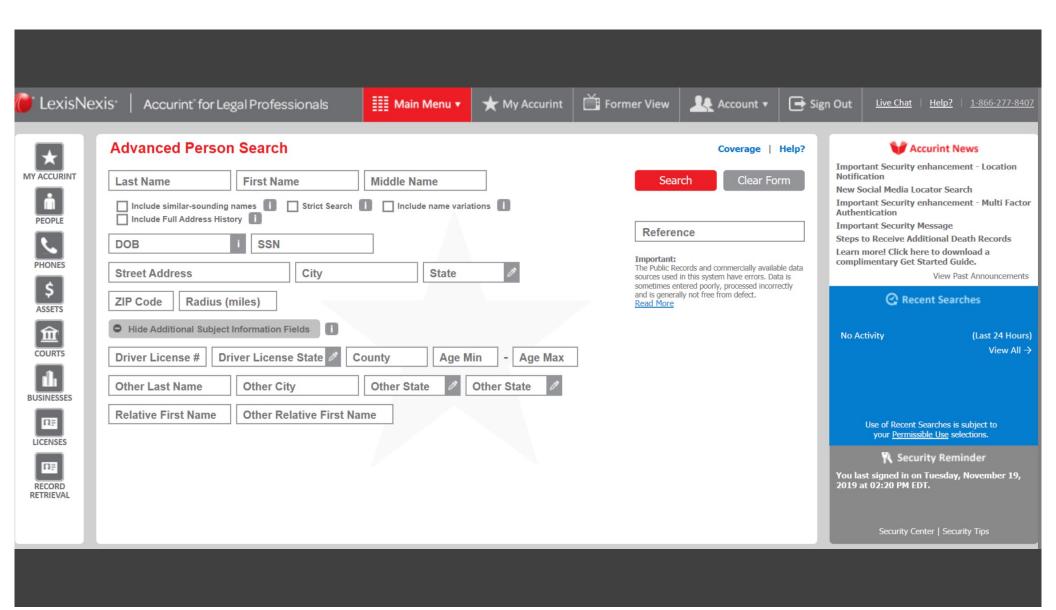
FIGURE 2.1 Crime pin maps at Scotland Yard, 1947 Copyright: Illustrated London News Ltd/Mary Evans

Inside a CompStat meeting. Photo: Bryan R. Smith/The New York Times/Redux

Police use big data to conduct two different kinds of surveillance

- 1. Dragnet: surveillance of everyone, rather than just those under suspicion
- 2. Directed: surveillance of people and places deemed suspicious





Predictive policing

- Location based: to predict property crime
- Person based: to predict violent crime

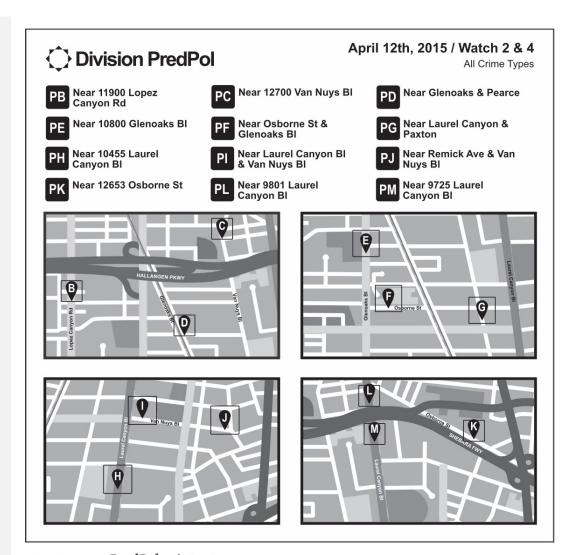


FIGURE 4.4 PredPol printout source: LAPD; rendering by David Hallangen

Algorithmic bias

- Systematic errors that lead to unfair outcomes
- If training data is biased, so too will the outcomes be biased
- Feedback loop/self-fulfilling prophecy
- Why might crime data be biased?

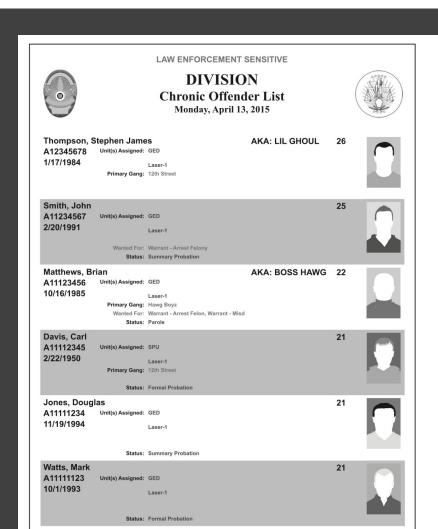
Person-based predictive policing

- 5 points for violent crime
- 5 points for gang affiliation
- 5 points for prior arrest w/ handgun
- 5 points for parole/probation
- 1 point for every police contact

OP. LIC. NO. STATE NAME (LAST, FIRST, MIDDLE) SUFFIX (JF										FFIX (JR, I	ETC.)	
0	C. E. S.		F	N							J	
RESI	DENCE	ADDRESS	3		. (CITY	STATE	SEX	DESCENT	HAIR	E	/ES
A					С			S	D	Н	E	
HEIG	SHT	WEIGHT	BIRTHD	ATE		CLOTHIN	G					
T		W	В									
PER	SONAL	ODDITIES							2000	PHONE NO		
BUS	INESS A	ADDRESS/S	CHOOLU	NION AFFI	L.					SOC. SEC.	NO.	
			Section 1							Z		
MON	IIKER/A	LIAS					GANG/CLU	JB				
						118-19						
SU	BJ	LOITERE	R 3 SO	LICITOR		5 GANG	ACTIVITY	7 ON	PAROLE		DRIVE	R
INF	0 2	PROWLE	R 4 WI	TNESS		6 HAS R	ECORD	8 ON	PROBATION		PASSE	NGER
	YEAR	MAKE	M	IODEL		TYPE	COLOR	VEH. I	IC. NO.		TYPE	STATE
V								L			K	G
-	INT CO	LOR I 1	BUCKET	SEAT	E	1 CUS	T. WHEELS	3 L	EVEL ALTE	R 5 CI	UST. PAI	NT
E		T 2	DAMAGE	ED INSID	ET	2 PAIN	ITED MURA	L 4 F	RUST/PRIME	ER 6 V	INYL TO	P
н		1 DAMA	GE 3 STI	CKER 4	EFT (6 FRONT	WIN- 1	DAMA	GE 3 CURT	AINS 4 L	EFT 61	FRONT
	BODY	2 MODIF	FIED	5 F	RIGHT 7	7 REAR	DOWS 2	CUST.	TINT	5 F	RIGHT 7	REAR

	s with subject	T.						
NAME (LAST, F		Maria Cara	DOB	SEX	GANG/MONIKER			
NAME (LAST, FI	RST)		DOB	SEX GANG/MON		KER		
SUBJECT'S BIRTHPLACE:	CITY	COUNTY		STA	ATE .	COUNTRY		
ADDITIONAL IN	FO (ADDITIONAL	PERSONS, BOOKING NO.,	NARRATIVE, E	EIG.)				
			-					
DATE	TIME	LOCATION				RD		
DATE	TIME	LOCATION SERIAL NO.	OFFICER			RD SERIAL NO.		

"Yesterday this individual might have got stopped because he jaywalked. Today, he mighta got stopped because he didn't use his turn signal or whatever the case might be. So that's two points...you could conduct an investigation or if something seems out of place you have your consensual stops. 'Hey, can I talk to you for a moment?' 'Yeah what's up?' You know, and then you just start filling out your card as he answers questions or whatever. And what it was telling us is who is out on the street, you know, who's out there not necessarily maybe committing a crime, but who's active on the streets. You put the activity of...being in a street with maybe their violent background and one and one might create the next crime that's gonna occur."



INFORMATION ONLY

Notification

LOS ANGELES POLICE DEPARTMENT
OFFICIAL PUBLICATION OF THE LAPD DIVISION CRIME INTELLIGENCE DETAIL
NOT TO BE PRINTED OR DISSEMINATED (READ ONLY)

THE BELOW LISTED INDIVIDUAL IS NOT WANTED AT THIS TIME. THIS PUBLICATION IS DESIGNED TO PROVIDE INFORMATION ON PROMINENT KNOWN OFFENDERS, CAREER CRIMINALS, ETC AND IS NOT TO BE USED AS THE SOLE BASIS FOR YOUR PROBMER IN CAUSE TO DEFENDERS, CEARS THE SHEEK CRIMINALS, ETCAND IS NOT TO BE USED AS THE SHEEK BASIS FOR THE PROBABLE CAUSE TO DETAIL THE INDIVIDUAL LISTED BELOW FOR ANY FUTURE CONTACTS. IF YOU BECOME AWARE OF AN NOVIDUAL THAT MATCHES THE SUSPECT DESCRIPTION ON A CRIME REPORT, PRIOR TO ANY FUTTHER INVESTIGATION YOU SHALL CONTACT THE APPROPRIATE DETECTIVE COORDINATOR FOR THAT CRIME.

NAME: Thompson, Stephen James **DOB:** 12/10/1984 **CII#:** A12345678

123 W. 12TH STREET, LOS ANGELES, CA, 90009 456 W. 78TH STREET, LOS ANGELES, CA, 90009

SEX: M HAIR: BLK HEIGHT: 602 EYES: BRN WEIGHT: 205

PHYSICAL ODDITIES:
TATTOO ON RIGHT HAND "12"
TATTOO ON LEFT HAND "G.J"
TATTOO ON RIGHT ARM "ONE"
TATTOO ON LEFT ARM "DEUCE"
TATTOO ON RIGHT ARM "LIL GHOUL"

ARREST: 211, ADW, 10851 VC AND BURGLARY, GRAND THEFT PERSON, NARCOTICS (POSS. CONT. SUBS. FOR SALE), CRIMINAL THREATS

CALGANGS: 12TH STREET GANGSTER WITH MONIKER OF "LIL GHOUL, LIL GJ"

PAROLE: NONE

PROBATION: NONE

WARRANTS:

VEHICLES: 1995 HONDA ACCORD 4D WHI CA-1ABC123 DRIVER 01/02/2010 2001 TOYOTA CAMRY 4D BLK CA-2CD456 DRIVER 04/05/2011

RECENT STOP: OFFICERS: SMITH #12345 / CARSON #67890 DATE: 06/07/2013 LOCATION: 12TH ST/MAIN ST

LOCATION: 121T GITMOUT S.

TO 1234

NAME OF THE STOP POSSIBLE ROBBERY
STOP STOP OF THE STOP OF THE

 POLICE CONTACTS IN-INEAR DIVISION:

 DATE
 RD
 LOCATION/DISPOSITION

 04(05/2010)
 1234
 1217H PL/MAIN

 06(07/2010)
 5678
 TIS FOR EXPIRED REG

 08(09/2011)
 1234
 STOPPED FOR PED IN ROADWAY

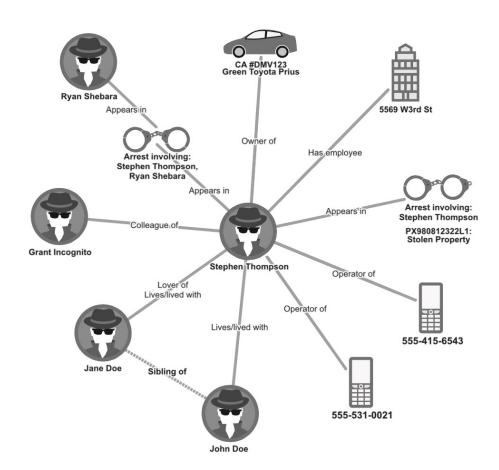
FOR INTERNAL DISTRIBUTION ONLY, NOT TO BE DISTRIBUTED OUTSIDE OF THE LOS ANGELES POLICE DEPARTMENT

Prepared by: <A. BROWN, SERIAL # 12345 > Crime Intelligence Detail (123) 456-7890 Date: 1/02/2012

"The Code of Federal Regulations. They say you shouldn't create a—you can't target individuals especially for any race or I forget how you say that. But we didn't want to make it look like we're creating a gang depository of just gang affiliates or gang associates...we were just trying to cover and make sure everything is right on the front end."

Big data policing harder to challenge

- Looks objective
- Algorithmic opacity
- Trade secrecy



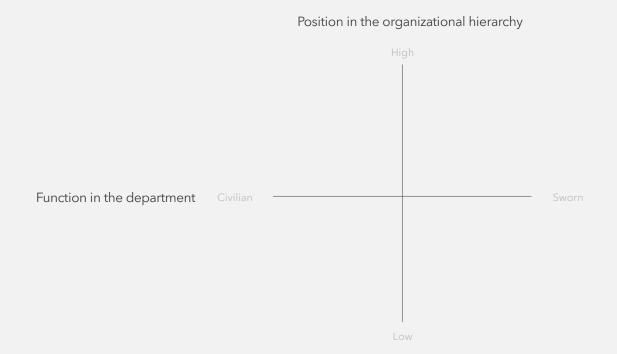
Big data policing is wider and deeper

- Includes a broader swath of people
- Can follow any single individual across a greater range of institutional settings, including those with no police contact

Using big data to police the police?

- Digital policing leaves digital trails
- Potential to police the police?

Resistance varied along two axes



- Reduce existing inequalities?
 - 1. Less biased predictions of risk (humans as cognitive misers)
 - 2. Police the police
- Reinforce existing inequalities?

- Reduce existing inequalities?
- Reinforce existing inequalities?
 - 1. Deepen surveillance of individuals already under suspicion while appearing to be objective

- Reduce existing inequalities?
- Reinforce existing inequalities?
 - Deepen surveillance of individuals already under suspicion while appearing to be objective
 - 2. Widen CJ dragnet unequally along lines of race, class, neighborhood

- Reduce existing inequalities?
- Reinforce existing inequalities?
 - Deepen surveillance of individuals already under suspicion while appearing to be objective
 - Widen CJ dragnet unequally along lines of race, class, neighborhood
 - 3. Lead people to avoid surveilling institutions fundamental to social integration

Table 2. Logistic Regression Predicting Institutional Avoidance

		Avoi	ded Surveil	ling Institu	Avoided Non-surveilling Institutions					
	Medical Care		Bank A	Bank Account		School/Work		Volunteer		us Group
	Model 6	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14	Model 15
Any Criminal Justice Contact	1.309*** (.017)		1.186** (.068)		1.314*** (.101)		.906 (.049)		1.084 (.072)	
Stopped		1.332*** (.096)		.939 (.076)		1.198 (.130)		.920 (.064)		.994 (.086)
Arrested		1.293** (.119)		1.294** (.124)		1.302* (.162)		.932 (.089)		1.141 (.135)
Convicted		1.331** (.128)		1.535*** (.153)		1.304* (.169)		.867 (.089)		1.238 (.167)
Incarcerated		1.102 (.195)		1.509* (.273)		2.181*** (.426)		.732 (.149)		1.410 (.369)
Sociodemographic Controls Behavioral Controls <i>N</i> Pseudo <i>R</i> -squared	Yes† Yes 14,458 .071	Yes† Yes 14,411 .071	Yes Yes 14,515 .207	Yes Yes 14,468 .209	Yes Yes 14,167 .089	Yes Yes 14,120 .090	Yes Yes 14,510 .095	Yes Yes 14,463 .095	Yes‡ Yes 14,400 .283	Yes‡ Yes 14,354 .284

Note: All coefficients expressed as odds ratios. Standard errors are in parentheses. Sociodemographic controls include sex, race, age, education, parental education, marital status, nativity, household configuration (i.e., number in household and whether individuals live with parents), military service, and whether respondents are in school or have a job. Behavioral controls include whether individuals self-report stealing over or under \$50, damaging property, carrying a gun or knife to school or work, stabbing someone, using cocaine or methamphetamine, selling drugs, or being in a gang, and whether respondents are classified as impulsive or candid.

[†]Includes controls for general health and possession of medical insurance.

[‡]Includes controls for religiosity and regular church attendance. *p < .05; **p < .01; ***p < .001 (two-tailed tests).

Table 3. Effect of Criminal Justice Treatment on Matched Samples										
		P	ropensity Sco	Doubly Robust Estimation						
Avoidance	Treated	Controls	Difference	SE	T-stat	Significance	OR	SE	N	Pseudo R^2
Surveilling Institutions										
Medical care	.321	.282	.039	.019	2.070	p < .05	1.186*	.096	3,148	.057
Bank account	.410	.301	.109	.019	5.620	p < .001	1.704***	.146	3,160	.191
School/work	.157	.126	.031	.014	2.170	p < .05	1.321*	.144	3,088	.096
Non-surveilling Institutions										
Volunteer	.748	.753	005	.018	280	n.s.	.951	.083	3,162	.087
Religious groups	.837	.818	.018	.016	1.160	n.s.	1.176	.129	3,134	.249

Note: Models include same suite of sociodemographic and behavioral controls as in Models 6 through 15. Sociodemographic controls include sex, race, age, education, parental education, marital status, nativity, household configuration, military service, and whether respondents are in school or have a job. Behavioral controls include whether individuals self-report stealing over or under 50 dollars, damaging property, carrying a gun or knife to school or work, stabbing someone, using coke or meth, selling drugs, or being in a gang, and whether respondents are classified as impulsive or candid. In light of cross-sectional results, criminal justice treatment is defined as arrested, convicted, or incarcerated, although results remain substantially unchanged when stopped is included, with one exception—bank account is only marginally significant at the p < .1 level.

*p < .05; **p < .05; **p < .01; ***p < .001 (two-tailed tests).

Table 4. Individual-Level Fixed-Effects Logistic Regressions Predicting Institutional Avoidance										
		Avoi	ded Surveil	Avoided Non-surveilling Institutions						
	Medica	l Careª	Bank Acct.		Work		Volunteer		Religious Group ^b	
	Model 16	Model 17	Model 18	Model 19	Model 20	Model 21	Model 22	Model 23	Model 24	Model 25
Any Criminal Justice Contact	1.478*** (.115)		1.904*** (.417)		1.411*** (.147)		.915 (.178)		1.067 (.093)	
Arrested		1.359** (.14)		1.827*** (.406)		1.287 (.185)		.807 (.216)		1.025 (.121)
Convicted		1.345* (.174)				1.011 (.169)		1.052 (.343)		.841 (.136)
Incarcerated		1.588*** (.160)		1.702 (.842)		1.750*** (.224)		.892 (.226)		1.247 (.144)
Wave fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	7,620	7,574	2,753	2,753	4,422	4,396	16,576	16,426	6,910	6,882
Pseudo R-squared	.069	.069	.092	.092	.137	.137	.87	.869	.106	.108

Note: All coefficients expressed as odds ratios. Models 16, 17, and 20 through 25 estimated using Add Health; Models 18 and 19 estimated using NLSY97. Standard errors are in parentheses.

^aModels include controls for general health and possession of health insurance. ^bModels include controls for religiosity and church attendance.

^{*}p < .05; **p < .01; ***p < .001 (two-tailed tests).

Implications for law

- 1. Pacing problem
- 2. Unsettles underlying legal categories (e.g., individualized suspicion, reasonable suspicion, probable cause, what constitutes a search)
- 3. Data are different in kind, not just degree
- 4. New opportunities for parallel construction

Nothing to hide, nothing to fear?

Takeaways

- 1) Algorithms do not transcend, but rather are shaped by the social world in which they are created and used.
- 2) Tradeoffs that are not made explicitly are inevitably made implicitly (e.g., fairness, accuracy, transparency, simplicity, privacy). Being explicit and quantifying our values is uncomfortable but necessary. It will allow us to measure progress.
- 3) Data does not *replace*, but rather *displaces* discretion to earlier, less visible, and therefore potentially less accountable phases of the policing process.
- 4) Relevant to other parts of the criminal justice system and beyond

Other data and criminal justice projects

- 1) Use of social media data in criminal cases
- 2) Civilian use of "smart" surveillance tech

Thank you

Questions/comments: sbrayne@utexas.edu

Supplemental slides

 Table 1. Framework for Analyzing Big Data Surveillance across Institutional Contexts

	G	oals		Means	Ends			
Types of Surveillance	Institutional Field	Relationship between Individual and Institution	Su Pro As	ifts in rveillance actices sociated with g Data	Institutional Interventions	Consequences for Inequality		
Categorical Suspicion	Criminal justice, intelligence	Classifying individuals according to risk; potential as criminals/ terrorists	1)	Discretionary to quantified risk assessment Explanatory to predictive analytics	Marking, apprehension, social control	Stigma, spillover into other institutions		
Categorical Seduction	Finance, marketing, credit	Classifying individuals according to their value to companies; potential as customers	3)4)5)	Query-based to alert-based systems Moderate to low inclusion thresholds Disparate to	Different products, perks, access to credit, opportunities, constraints	Upward or downward economic mobility; reproducing current patterns		
Categorical Care	Medical care, public assistance	Classifying individuals according to their need; potential as clients		integrated data	Personalized medicine, welfarist service delivery	May reduce inequality except when intersects with suspicion or seduction		