

SOUTHWESTERN PUBLIC SERVICE COMPANY INTEGRATED RESOURCE PLAN

Zoe Lees, RVP, Planning and Policy

Water and Natural Resources Committee Meeting Las Cruces, NM

October 4, 2013

XCEL ENERGY OVERVIEW

Fully Regulated and Vertically Integrated Utility

Four OpCos Across 8 States

\$60 Billion Enterprise Value **2.1 Million** Natural Gas Customers

Electric Customers

3.8 Million

Comprehensive Sustainability Goals

SPS New Mexico service territory

SPS serves approx. 125,000 customers in the following 16 towns in New Mexico:

Artesia	Carlsbad	
Clovis	Dexter	
Eunice	Hagerman	
Hobbs	Jal	
Lake Arthur	Loving	
Malaga	Otis	
Portales	Roswell	
Texico	Tucumcari	

New Mexico Customers

Transitioning to Renewables

SPS IRP Overview

6

IRP Modeling Results Statement of Need Inputs

- All scenarios included a substantial build out of new renewable generation ranging from 4,281MW to 6,631MW of wind and solar generation between 2028 and 2030
- New dispatchable additions ranged from 1,043MW to 4,290MW during the same period
- Total resource additions ranged from 5,324MW to 10,211MW
- For context, SPS currently has ~7,500MW of installed capacity with an accredited capacity of 5,400 and a system peak of ~4,200MW

Key Modeling Takeaways SPS Scenarios

STRENGTHS

- A continued and substantial need for new, lowcost, renewable generation through the end of the decade and beyond
- The build-out of new renewable generation requires additional dispatchable capacity that conforms with New Mexico's Energy Transition Act

OPPORTUNITIES

- There's an increasing need for alternative, carbonfree, dispatchable, and economic technologies over the 20-year planning period
- SPS's 2023 IRP analysis evaluated long-duration storage and hydrogen-fired combustion turbines technologies, however, alternative, carbon-free, and dispatchable technologies are/will become available and are encouraged to bid into RFP

WEAKNESSES

 Currently, lithium-ion battery energy storage is the predominate, commercially-available carbon-free, dispatchable technology – However, its duration is relatively limited (i.e., 4 – 8 hours)

THREATS

 Relying solely on wind, solar, and short-duration battery energy storage is not economical and presents reliability challenges

Capacity Need Summary

Load Growth, Retirements, & Resource Adequacy Requirements

- SPS is forecasting a Summer peak demand of between 4,771MW and 6,517MW by 2030
- Assuming the existing Southwest Power Pool PRM of 15%, SPS's capacity need is between 1,760MW and 3,768MW in 2030
- Capacity need increases to 1,903MW and 3,963MW under a hypothetical 18% summer PRM requirement
- Includes retirement of 1,825 MW of thermal retirements by 2030

9

2031

2032

2033

IRP Modeling Results

New Generating Resources: Cost and Technical Capability Certainties

- SPS relied upon generic cost estimates and projected performance capabilities
- The level of accuracy is dependent upon the maturity of the technology
- Actual cost estimates and performance capabilities will be determined by future competitive solicitations
- SPS's 2023 IRP analysis concentrated on long-duration storage and hydrogen-fired combustion turbines technologies, however, other technologies are available and are encouraged to bid into RFPs

Commercially Available (Costs are well known)

- Wind
- Solar
- Battery Energy Storage
- Combustion Turbine Generators
- Combined Cycle Generation

Emerging Technologies (Costs are less known)

Long-Duration Energy StorageHydrogen Infrastructure & Costs

Carbon Free Technology Initiative

- Members: 100+ EEI member utility participants, 5 NGOs, EPRI, NEI, others
- Facilitated workgroups identified priority technologies and approaches
- Advocacy led to success in tripling of DOE's RD&D budget through IIJA
- Identified and recommend policies for five technology groups
- <u>www.carbonfreetech.org</u>

Advanced EE & Long Duration Storage

Proposed by EPA as compliance pathway for emissions reduction for fossil fuel units

Potential Carbon Reduction Pathways – 2020-2050

2020s - "Foundation for the Future"

- **Execute** on traditional solar, wind and storage investments to meet 80% by 2030 goals
- Monitor and research advanced technology developments, partly through 3rd party technology fund investments and partnerships with universities / collaborations such as LCRI
- **Pilot** select advanced technology and LDC solutions

2030s - "Implement Some Deep Tech"

- Implement or start construction on first round of CF 2050 technology that has been proven commercially viable
- Focus first on lower cost carbon reduction tech that have begun to come down the cost curve
- Mix of long duration energy storage, hydrogen, nuclear SMR, carbon capture and LDC solutions

2040s - "The Last 10%"

- Shut down, capture carbon or blend hydrogen at final gas plants
- Implement relatively more expensive carbon reduction generation and storage as needed
- Finalize any gas LDC decarbonization, depending on policy path

Carbon Free Technologies: What we are evaluating

Current IIJA Applications

Торіс	Submitted	DOE Funds Requested
LDES: Form Energy, MN & CO	March 3	\$70 million
GRIP: Xcel Energy Grid Resiliency – Smart Grid LTE – All OpCos	March 17	\$50 million
GRIP: CO State Grid Resiliency – (prime: CO Energy Office)	March 17	\$50 million; \$30 million earmarked for Xcel Energy
GRIP: Wildfire Mitigation & Extreme Weather Resilience (Grid Resiliency)- All OpCos	April 6	\$100 million
H2 Hub: Western Interstate Hydrogen Hub (WISHH)- PSCo	April 7	\$526 million
H2 Hub: Heartland Hydrogen Hub (Heartland)- NSP	April 7	\$560 million
GRIP: Joint Transmission Interconnection Queue Projects and Portfolios, JTIQ (prime: MN Dept. of Commerce)	May 19	\$225 million
Hydro-Electric: Cabin Creek Generation Upgrades - PSCo	June 20	\$5 million
LDES: Ambri Battery - SPS	September 15	\$5 million
Maximum award total		\$1.57 billion